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Abstract
With the growing popularity of VR and AR devices, eye tracking has
become a critical user interface and input modality for on-device AI
agents. However, a compact, power-efficient, and robust eye tracking
solution for AR/smart glasses remains an unsolved challenge. In
this paper, we present mmET, the first mmWave radar-based eye
tracking system on glasses. Our system, implemented as a pair of
prototype glasses, utilizes sub-1cm mmWave radars placed near the
eyes. The radars transmit FMCW signals and capture the reflections
from the eyes and surrounding skin as the system input. To refine
gaze estimation accuracy and data efficiency, we propose several
novel methods: (1) concatenating multiple chirps and beamforming
with learnable weights to improve resolution, (2) a novel neural
network architecture to enhance robustness against remounting, (3)
pretraining with contrastive loss to enable fast adaptation for new
users. Experiments with 16 participants show that mmET achieves
an average angular gaze direction error of 1.49◦ within sessions
and 4.47◦ across remounting sessions, and reduces the training data
needed for new users by 80% using the pretrained model.

CCS Concepts
• Computer systems organization → Embedded and cyber-physical
systems; • Human-centered computing → Human computer in-
teraction (HCI); • Computing methodologies → Machine learn-
ing.
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Figure 1: Illustration of mmWave radar-based eye tracking on
smart glasses. mmET predicts user’s gaze direction based on the
reflected mmWave radar signals from eyeballs, eyelids and surround-
ing skin.

1 Introduction
Eye tracking is an enabling technology for various applications,
including psychology studies [34, 47], health monitoring [43, 50],
hands-free user interfaces [28, 41] and inferring user intent [46].
Recently, eye tracking has become increasingly important for meta-
verse or XR (extended reality) applications, ranging from foveated
rendering to user interfaces. For example, recent VR devices allow
users to navigate the virtual worlds with their eyes, e.g., selecting UI
elements with their gaze [1, 3]. For AR or smart glasses, eye track-
ing can provide gaze-based input that enables hand-free interactions
and context-aware, personalized AI agents [4]. However, integrating
eye tracking in the compact form factor of smart glasses remains
challenging. The small form factor of glasses imposes very limited
power and space budgets. This motivates an eye tracking system that
balances high accuracy with minimal sensor size and power usage.

Current eye tracking solutions typically perform computer vision-
based eye glint detection using infrared (NIR) LEDs and cameras.
Commercial eye tracking glasses [5, 8] achieve state-of-the-art accu-
racy (∼ 1◦ average error) but suffer from a high hardware footprint,
i.e., size, cost, and power consumption, complicating their integra-
tion into glasses. They are also prone to occlusion by eyelashes
and sensor saturation by strong ambient light, e.g., outdoor sun-
light. Recent research work has explored alternative approaches. Li
et al. present [32] an accurate battery-free eye tracker using NIR
LEDs and photodiodes, but its sensor array exceeds 6 cm per eye
and is constrained to indoor scenarios due to sunlight interference.
GazeTrak [30] presents a promising accurate eye tracking system
on glasses using acoustic waves, but the microphone array spans
the entire glasses frame and needs extensive calibration/training for
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Figure 2: Example usage scenario of gaze input on smart glasses.
Gaze input provides extra context of user’s words to enable a more
intelligent AI assistant.

each user. With existing solutions fall short in at least one aspect, we
aim to address the gap with a system that offers accuracy, robustness,
compactness, and low power consumption together.

In this paper, we present mmET, the first mmWave radar-based
eye tracking system on glasses, as illustrated in Figure 1. Together
with a front-facing scene camera, users’ gaze direction can provide
important context for AI agents to understand the focus in the current
scene (Figure 2). Compared with other approaches, mmWave radars
have a small array size, low power consumption, and immunity to
eyelash occlusion and outdoor sunlight, while providing high sensi-
tivity to eye movements. Moreover, one unique benefit of antennas
is that they can be transparent [15, 42] and reuse the space occupied
by optical glass lenses, meanwhile ensuring proximity to eyes. We
compare our system with selected eye tracking solutions for glasses
in Table 1, demonstrating that mmET is the first one that provides
a combination of all necessary properties for AR/smart glasses –
accuracy, immunity to sunlight, small size, and low power.

mmET estimates the user’s gaze direction by analyzing reflected
FMCW (frequency modulated continuous wave) signals from the
eyes. The displacement sensitivity of radars (∼100 µm from phase
values) and multiple sensing channels (8 channels per eye) enable
detection of subtle movements of the eye, eyelids, and the surround-
ing skin to infer the gaze direction. Figure 3 visualizes the radar
spectrogram from two antennas when the user’s eyeball orientates to-
wards different directions, showing a clear correspondence between
eyeball orientation and radar signals. Spectrogram colors represent
dB-scale signal power, while the range axis represents the reflected
signal path lengths, derived via FFT processing of down-converted
FMCW signals. Unlike conventional radar localization, which de-
tects object peaks, our system analyzes fine-grained amplitude values
across range bins, antennas, and beamforming vectors to estimate
eye status.

Accurate and robust angular gaze direction prediction based on
radar signals presents several challenges. First, eye and surrounding
skin movements are often subtle, especially when the gaze direction
shifts by only a few degrees. Second, radar signals are sensitive to
glasses movement relative to the user’s head, especially after re-
mounting. A machine learning (ML) model may overfit to trained
sessions and fail to generalize to unseen sessions after remounting.

Upper left Upper Right Bottom Left Bottom Right

RX 1

RX 2

Figure 3: Visualization of eye movements and corresponding
radar signals. We show the radar spectrogram from two RX anten-
nas, as an example of clear correspondence between eye movements
and radar signal changes over time.

Lastly, extensive training or calibration data collection is often in-
feasible, making it challenging to adapt to new users with limited
training data.

We address these challenges with tailored signal processing, a
novel neural network architecture and a cross-modal pretraining
strategy, as detailed in section 3: (1) We carefully craft the input
radar signals to boost range and angular resolutions by concatenat-
ing multiple radar chirps and beamforming with learnable weights
respectively. (2) To gain robustness against remounting, we use a
ResNet backbone and multiple prediction heads to regress multi-
ple eye pose targets, including gaze direction, relative location and
orientation of eyeballs. This multitask learning approach helps the
neural network (NN) model to distinguish eye movements from
remounting-induced changes. (3) To reduce calibration effort and
improve generalization, we pretrain a radar model using cross-modal
contrastive learning, based on multiple users’ eye images and radar
signal data, and fine-tune the pretrained model for new users. Note
that multitask learning [11] and contrastive learning [13] are general
ML approaches, applicable to various domains and problems, but
they do not solve our challenges directly. Instead, we adapt them
with tailored model architectures and loss functions for our mmWave
sensing problem.

We build an eye tracking prototype with two mmWave radars [2]
mounted at the left and right corners of the glasses frame (Figure 10).
The mmWave antenna array is integrated with an mmWave chip,
resulting in a compact 8 mm sensor size. Two radar MCU boards
collect radar signals and stream them to the computer for processing.

We evaluate the performance of mmET with data from 16 users.
Each participant wore the prototype and followed a marker displayed
on a screen in front of them to collect data; users remounted the
glasses multiple times, with each mounting considered as starting
a new session. We collect radar frames paired with eye images (for
ground truth) at 100 frames per second (FPS), 20 minutes per user.
The metric for eye tracking accuracy is the angular error of the esti-
mated gaze direction. For personalized models trained on individual
user’s dataset, mmET achieve an average angular error of 1.49◦

across 10 users when tested with data split from training sessions
(in-session). When tested with unseen sessions after remounting
glasses (cross-session), the error increases to 4.47◦ on average. For
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Sensor Type Accuracy Adversarial Factors Sensor Size Power Consumption
Pupil Labs [5] LEDs and Cameras 1.3◦ Sunlight, FOV, hair occlusion ∼1 cm >100 mW
Cider [39] LEDs and Camera 0.6◦ Sunlight, FOV, remounting ∼1 cm 40 𝜇W
Li et al [32] LEDs and Photo diodes < 2◦ Sunlight, remounting >6cm ∼40 𝜇W
GazeTrak [30] Speakers and Mics 3.6◦ remounting >5cm 16.4 mW
mmET mmWave radars 1.49◦ remounting 8mm 6 mW

Table 1: Comparison of eye tracking systems on glasses. 2

our pretrained model trained on data from 10 users, we achieve
comparable accuracy on 6 new users after fine-tuning the model
with only 5-minute calibration per user. Compared to GazeTrak [30]
(Table 2), we improve in-session accuracy by 2.1◦ and cross-session
accuracy by 1.2◦, while requiring only half the training data and
∼13.3% of the sensor array size.

To summarize, we make the following contributions:
• We introduce mmET, the first mmWave-based eye tracking

system for AR/smart glasses, which achieves a combination
of accuracy, robustness, compactness, and low power con-
sumption for the first time.

• We propose novel mmWave sensing techniques: (1) concate-
nating chirps and learnable beamforming to enhance resolu-
tion, (2) estimating eye locations and orientations to improve
robustness against remounting, (3) pretraining with radar sig-
nals and eye images to learn generalizable features and reduce
calibration data needed.

• We evaluate mmET on 16 users, achieving an average angu-
lar gaze direction error of 1.49◦ within sessions and 4.47◦

across remounting sessions, and an 80% reduction in required
training data of new users using a pretrained model.

• We present a demo video 1 to showcase system performance.

2 Background and Related Work
2.1 Eye tracking
Eye tracking is the process of estimating the direction or point of
gaze, i.e., which direction or which position the user is looking at.
Various eye-tracking solutions exist, each with its own advantages
and limitations.
Webcam-based eye tracking. Researchers have extensively ex-
plored web camera-based eye tracking [26, 55] with various poten-
tial applications including human-computer interaction, use behavior
or psychology studies [44, 45, 53]. Webcams have the advantages of
low-cost and widespread availability, which facilitates the broader
use of eye tracking. However, webcam-based eye tracking meth-
ods have relatively low accuracy and are susceptible to factors like
lighting conditions, head and camera orientations. In this paper, we
focus on eye tracking solutions on wearable devices, specifically,
eyeglasses form factor.
Eye camera-based eye tracking. Wearable-based eye tracking
devices gain proximity to users’ eyes and avoid the impact of
head/camera orientation as the hardware is mounted on users’ face.
The common approach is using NIR (near-infrared) LEDs and eye
cameras, which take NIR images of user’s eyes and estimate gaze

1We visualize mmET performance after remounting with demos. Video link:
https://drive.google.com/file/d/19odygKsT1zpPJFLscONSFzOZCtTWGErd

direction/position according to the relative position of pupils. Many
commercial products, such as Pupil Labs Neon [5] and Tobii Glasses
3 [8], follow this approach. Such eye cameras are very expensive
(thousands of dollars) and power-hungry (> 100mW for eye cam-
eras alone) and require external batteries to power the device. Due
to the nature of near-infrared light, they are also prone to strong
sunlight or ambient light, and hair/eyelash occlusion. To mitigate
outdoor sunlight interference, they typically increase the brightness
of LEDs, worsening power consumption and necessitating frequent
recalibration when ambient light condition changes.

iShadow [38] proposes a novel design to reduce power consump-
tion by reducing the redundancy in eye images with a low-power
image sensor, but it cannot operate under outdoor sunlight. Cider [39]
explores the power-robustness trade-offs by adapting to different
illumination situations and achieves high accuracy and frame rate.
However, Cider remains susceptible to sunlight interference, and
changes in the relative position between glasses and eyes during
remounting can increase error. Another limitation, noted in the pa-
per, is the camera’s limited field of view (FoV), which can cause
users’ eyes to fall out of the camera’s view—a common issue for
camera-based solutions.
VR/AR devices. VR devices often incorporate eye tracking features,
as they have larger form factors than glasses and relatively large (or
external) batteries, which allow the use of multiple NIR cameras to
capture images of users’ eyes [1, 3]. Users’ eyes are also enclosed
in a dark environment, which excludes the sunlight interference.
For AR and smart glasses, it is significantly more challenging to
integrate eye tracking solutions. To support eye tracking with NIR
LEDs and cameras, AR glasses often show a bulky form factor and
require an external battery pack to maintain a reasonable battery
life. Moreover, outdoor use introduces sunlight interference, which
can saturate NIR camera sensors. For AI assistant use cases, smart
glasses [4, 7] so far do not widely use eye tracking and reply on
users pointing cameras towards the target direction, which can fail in
cluttered scenes (Figure 2). The power consumption of eye-tracking
hardware alone is difficult to determine, but our measurements show
that eye cameras consume a minimum of 100 mW, reaching up to
200 mW depending on FPS and LED brightness.
Non camera-based eye tracking. To reduce power consumption,
and avoid interference from outdoor sunlight, recent work explores
non-camera based eye tracking system. Li et al. present [31, 32] a
low-power low-cost eye tracker using NIR LEDs and photodiodes.
However, the size of sensor is over 6 cm for each eye and remains
constrained to indoor scenarios where ambient sunlight interference
is limited. EyeGesener [49] presents an eye gesture listener for smart

2This is not an exhaustive list. We exclude the power consumption of computation to
focus on comparing sensing approaches.
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Figure 4: Overview of neural network model design. Using crafted radar data as input, we extract radar features with ResNet as backbone
and make multiple predictions, including gaze direction and eyeball status.

glasses but is limited to classification of coarse-grained gaze direc-
tions. GazeTrak [30] presents the first acoustic-based eye tracking
system on glasses and shows promising results, but it needs extensive
calibration/training for each user and after remounting. Moreover,
the microphone array spans the entire glasses frame, posing chal-
lenges for hardware integration on AR/smart glasses. mmET falls
into the category of non-camera-based eye tracking systems, and we
mainly compare against GazeTrak, the most relevant non-camera-
based system.

2.2 mmWave Radar-based Sensing
mmWave radars [23] are sensor devices that transmit and receive
reflected mmWave signals, which are typically encoded as chirps
using FMCW (frequency modulated continuous wave). They can
measure the position, direction, and movement of detected targets
accurately with the small wavelength of mmWave. Due to their high
accuracy, low power consumption, and penetration for certain visual
blockage, they have been used for various industrial [24], automo-
tive [12, 16, 18, 37, 51], and IoT applications [14, 25, 29, 40, 48].
Recent work also explores deploying radars to sense face or eye sta-
tus. They show the capabilities of radar signals for facial expression
recognition [54], heart rate monitoring [21], seismocardiography cap-
ture [17], blink detection [10, 20], eye gesture/movement [35, 56].
However, existing works often use a standalone radar rather than
wearable glasses, and are limited to coarse-grained classification,
such as blinks (eye closed or open), and eye gestures (left or right).
Accurate eye tracking with mmWave radars, a regression task for
angular gaze direction down to a sub-degree accuracy, remains chal-
lenging and unexplored.

Our Approach. To the best of our knowledge, mmET is the first
mmWave radar-based eye tracking system. mmET advances mmWave
sensing accuracy using tailored signal processing, a novel ML model
design, and a cross-modal pre-training strategy (section 3).

Comparison. We compare mmET with related eye tracking sys-
tems in Table 1. We select state-of-the-art systems with distinct
sensing approaches for ease of comparison. Light-based solutions

commonly suffer from sunlight interference, making them unsuitable
for outdoor AR/smart glasses. Low-power eye-tracking methods of-
ten struggle with remounting and glasses movement. This is likely
because low-power solutions often have reduced input data dimen-
sions, such as low-resolution cameras, which can lead to reduced
robustness. We mitigate this issue with multitask learning in subsec-
tion 3.3. Our system provides low gaze direction error, a compact
sensor size, low power consumption, and is not impacted by sunlight
– a combination of characteristics suited for AR/smart glasses.
Power consumption. For a fair comparison, we list sensor power
consumption and exclude computation power for all solutions in
Table 1 to the best of our knowledge. For mmET, we measure power
consumption based on the electric current of the radar sensor board,
which includes the RF front end, ADC, and raw data transmission.
For Pupil Labs glasses, we estimate LED and camera power based on
measurements of similar solutions and use 100 mW as an estimated
minimal power consumption, while excluding front-view camera
and video streaming power consumption. We note that ML computa-
tion power depends on the application processor and remains similar
across different sensors. For instance, AR glasses using the Qual-
comm XR2Gen2 [6] run face tracking and eye tracking ML models
at approximately 20-40 mW and mmWave radars offer potential
savings due to lower input data dimensions compared to cameras.
Safety considerations. Ensuring biological safety is critical for wire-
less devices. 60 GHz mmWave signals are non-ionizing radiation,
excluding the risk of causing cancer. Therefore, potential health
concerns relate to heating effects, i.e., raising the temperature of
human body. The metric to set the limit is power density (PD) [9, 22].
IEEE C95.1-2005 [9] states the maximum permissible exposure at
60 GHz is 10 𝑊 /𝑚2 (i.e., 1 𝑚𝑊 /𝑐𝑚2), aligned with FCC and IC-
NIRP guidelines [22]. Related studies [27, 52] show that 60 GHz
mmWave radiation under PD restrictions on animals’ eyes cause no
ocular damage. Given the proximity to eyes for our system, we have
ample SNR for the radar signals and intentionally tune down the
radar transmission power. We perform power density measurement
with mmWave radars at 60GHz, averaging over a 4 𝑐𝑚2 area at 2
mm distance. The measured PD is 0.79𝑊 /𝑚2 for continuous wave
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(a) Range profile with mean value across chirps 

(b) Range profile with concatenated chirps 

Figure 5: Processing radar range profile. Concatenating the radar
chirps provides a range profile with higher resolution.

operation. Note that our system uses bursts of FMCW frames, with
a duty cycle of 1-3% (depending on FPS), so the average power
density is over 100× lower than the safety limit.

3 System Design
3.1 Overview
With FMCW radar signals from our hardware prototype as input,
we train a neural network model to predict the corresponding gaze
direction, employing tailored signal processing and neural network
architecture (Figure 4). We first process the radar signals to enhance
the resolution. Specifically, we concatenate signals from multiple
radar chirps to increase the frequency/range resolution and employ
beamforming with learnable weights to extract spatial information.
Next, we combine signals from two radars as one radar data frame
and use both the current radar data frame and the difference with the
last frame as input. With the input, we utilize ResNet-18 as the back-
bone to extract radar features and multiple fully-connected layers to
make predictions for multiple targets: gaze direction, eyeball location
and orientation. Additionally, to minimize the calibration/training
needed for users, we pretrain a ML model with multiple users’ data
using contrastive learning, which enables adaptation to new users
with significantly reduced calibration.

3.2 Crafting FMCW Radar Signals
Following the standard processing of down-converted FMCW sig-
nals, we perform FFT on the signals to get the frequency domain
response, i.e., the range profile of mmWave radar, where each range
bin corresponds to the reflected signals with a specific path distance.
The radar range bin resolution follows

𝑑𝑟𝑒𝑠 =
𝑐

2𝐵
(1)

where 𝑐 is the speed of light and 𝐵 is the FMCW bandwidth.
Concatenating chirps to improve resolution. A key challenge in
our use case is the short distance between radars and eyes, resulting
in only a few range bins within the meaningful range. Our experi-
ments show that the useful range extends up to 24 cm, as signals may
reflect multiple times between the face and the glasses. To prevent
unrelated data from misleading our ML model, we only use this
range of radar range profile.

This short range leads to low input data dimension and low reso-
lution that hurt performance. To solve this, we concatenate signals
of multiple adjacent FMCW chirps to increase the length of signals

(b) Physical Antenna Layout (c) Virtual Antenna Array

TX1

TX2

RX1 RX2 RX3

RX4

Beamforming

1 cm(a) Radar Module

Figure 6: Beamforming with the virtual antenna array. We per-
form learnable beamforming with a 2×4 virtual antenna array from
our radar module.

in one frame. The increase of time domain signal length, in turn,
increases the resolution of frequency domain range profile:

𝑑𝑟𝑒𝑠 =
𝑐

2𝐵𝑁𝑐

(2)

where 𝑁𝑐 is the number of chirps we concatenated. mmWave radars
typically transmit multiple chirps in one frame to capture Doppler
information. However, for our eye tracking use case, eyes and sur-
rounding skin move slowly or even keep stationary. Within a single
frame, chirp-to-chirp differences are minimal. This means we cannot
extract Doppler information, but can have longer signal duration
by concatenating signals. We choose to use 4 chirps per frame. Be-
cause of the phase discontinuity between chirps, concatenating more
chirps leads to zero values in the range profile and brings no extra
gain. Figure 5 compares the radar range profiles using mean value
across chirps versus concatenated chirps. With concatenated chirps,
we can get a higher resolution, showing clearer peaks and more
distinguishable differences between different eye status.

Is the resolution enough? A key question is whether radars provide
enough resolution to capture eye details such as eyeball orientation
and skin movement. Concatenating chirps improves range bin reso-
lution as the basis for further steps. For our configurations shown in
section 4, the resolution appears to be around one centimeter, which
may seem insufficient for detecting subtle eye changes. However,
the range bin resolution does not directly determine the minimal
detectable eye motion. Conventional range resolution describes the
ability to distinguish two separate objects, whereas our goal is to
analyze the status of a single close-proximity object – the eye. In-
stead of identifying distinct peaks in the range profile, we leverage
variations in the summed multipath reflections from different parts
of the eye and surrounding skin. Although individual eye structures
may not produce clearly separate peaks, changes in the overall range
profile—specifically in amplitude— correspond to gaze direction
shifts (Figure 3). We use all range bins including the first few and
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16 antennas 
of 2 radars

16 beamforming
channels

Figure 7: Radar data frame format. We use 32 channels in total,
including 16 channels from (virtual) antennas of 2 radars and 16
beamforming channels.

the fine-grained amplitude variations provide sufficient information
for accurate gaze direction estimation.
Learnable beamforming. Each of our radar has 2 TX (transmitting)
antennas and 4 RX (receiving) antennas, which forms an 8 element
virtual array as shown in Figure 6. The array allows us to perform
beamforming, i.e., steer the radar receiving beam towards differ-
ent directions to collect spatial information. Intuitively, each beam
gives us information about different regions of the eye. However,
we cannot manually select the beam directions, i.e., a fixed set of
beamforming weights/configurations. First, the virtual array is irreg-
ular, making it difficult to manually specify beams that fully utilize
the array size. Second, the eyes are so close to array so that they
are not in the far field. Conventional beamforming formulation may
break due to near field coupling. Thus, we treat the beamforming
weights (phase shift values for each antenna’s signals) as learnable
parameters, which can be optimized during ML model training using
gradient descent. This is similar to prior work on learnable beam-
forming for mmWave communication [36, 57].
Assembling the radar frame. We combine all the signals as a radar
data frame, including 16 channels from all antennas of 2 radars
and 16 channels from beamforming, as shown in Figure 7. Each
beamforming channel corresponds to the result by applying one set
of beamforming weights/configurations.

H𝑏𝑓 = W𝑏𝑓 H𝑎𝑛𝑡 (3)

where 𝑊𝑏𝑓 is a 16 × 16 matrix of beamforming weights, 𝐻𝑎𝑛𝑡 is
a 16 × 32 matrix of raw signals from 16 antennas, and 𝐻𝑏𝑓 is 16-
channel results after beamforming. The final radar data frame is a
matrix that combines H𝑏𝑓 and H𝑎𝑛𝑡 .

To extra time-domain differential information, we also calculate
the different between two neighboring radar data frames. We use
both the current radar data frame and inter-frame difference data as
the final input for our ML model.

3.3 Multitask Learning for Robustness
With the processed radar data input, we use a neural network to
estimate/predict the corresponding gaze direction. We use ResNet-
18 [19] as the backbone to extract radar features and multiple fully
connected layers to output the gaze direction, eyeball location and
orientation.

Eyeball 
Orientation

Z
X

Y

Glasses
Coordinate 

SystemEyeball 
Location

Gaze
Direction

Figure 8: Gaze direction and related eyeball information. We use
multitask learning to improve system robustness by estimating gaze
direction, eyeball locations and orientations together.

Remounting challenge. A major challenge for mmWave based eye
tracking is remounting the glasses, i.e., taking the glasses off and
then putting them back on. This causes small shifts in the relative
position between the radars and the eyes. Such movements relative
to eyes can be over 8 mm, according to our experiments. Due to the
sensitivity of mmWave radars and the complex multipath scattering
of mmWave signals, the radar signals for the same gaze direction
can be very different after remounting. We define the continuous
wearing of glasses without remounting as one session. The same
remounting challenge exists in prior work on acoustic-based eye
tracking [30], which leads to the need of calibration for each session
after remounting. We also see similar issues of glasses movement
in Cider [39] and photo diodes-based glasses [31]. Next, we first
describe the glasses coordinate system and show how we mitigate
this issue with multitask learning.

Coordinate system. We define the glasses coordinate system with
its origin at the front camera on the glasses as shown in Figure 8.
The gaze direction is the direction that users look towards relative
to the glasses coordinate system on their head. We can express the
gaze direction as an angular vector. It can be converted to the 2D
location of the users’ gaze on the video frame of front camera for
video based applications, such as our demos. This aligns with the
needs of context-aware AI agents [4] and is the typical set up for
eye tracking glasses [5, 8]. Within the glasses coordinate system, the
eyeball location is a 3-element vector describing the offset between
the coordinate center and the eyeball. The eyeball orientation is
3-element unit vector describing the eyeball’s direction. Rather than
enforcing an explicit mapping from eyeball location and orientation
to gaze direction, we expect the ML model to learn the relationship
implicitly.

Estimating eyeball information. We apply multitask learning [11,
33] to mitigate the influence of remounting. Multitask learning is an
approach to improves model generalization by using extra domain
information contained in the training data of related tasks. In our
case, our primary task is estimating gaze direction, while related
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Radar Data

Eye Images

Eye Image 
Features

Radar 
Features

Frozen

Contrastive 
LossRadar model

Pretraining

Figure 9: Pretraining the radar model using contrastive learning.
We maximize the agreement between the radar features and eye
image features using contrastive loss.

auxiliary tasks are estimating eyeball location and orientation. When
improving the auxiliary tasks, the primary task benefits from the
related information extracted from the data.

Multitask loss function. We optimize all tasks together during
training with gradient descent of Adam optimizer. The multitask loss
function L𝑀𝑇 follows the following equation:

L𝑀𝑇 =
1
𝐵

𝐵∑︁
𝑖

(
(𝑔𝑖 − 𝑔𝑖 )2 + 𝜆𝑚𝑡 (𝑒𝑖 − 𝑒𝑖 )2 + 𝜆𝑚𝑡 (𝑜𝑖 − 𝑜𝑖 )2) (4)

where 𝐵 is the number of samples per training batch, 𝑔𝑖 , 𝑒𝑖 , 𝑜𝑖 are the
ground truth vectors of gaze direction, eyeball location, orientation,
𝑔𝑖 , 𝑒𝑖 , 𝑜𝑖 are the respective output from the model, 𝜆𝑚𝑡 is a hyperpa-
rameter. This multitask learning loss guides the ML model to learn
the related context about the eye tracking task, allowing it to learn
robust radar features that can distinguish gaze direction and eyeball
location changes. Thus, across different remounting sessions, we
can tolerate the eyeball location change while not affecting gaze di-
rection prediction. We show that mmET accurately estimates eyeball
location and orientation in Figure 16, and multitask learning reduces
the gaze direction error substantially in Figure 15.

3.4 Pretraining with Contrastive Learning
Following approach described above, we train models based on each
user’s dataset to have personalized user-dependent models that work
well for each user as shown in Figure 13. Due to the difference of
each user’s eyes, such models cannot work for unseen new users.
Eye tracking systems typically use a calibration process to collect
data for unseen users. Our next goal is to have a user-adaptive model
that can adapt to new users by fine-tuning with a small amount of
training/calibration data.

Pretraining for fast adaptation. To achieve fast adaptation, we
pretrain a model with multiple users’ datasets mixed together (10
users in this paper). By training on diverse user data, the model can

learn a set of model weights that extract generalizable features and
ignore unrelated user-specific variations. This allows the pretrained
model to serve as an effective initialization, requiring only a small
amount of fine-tuning data from new users. With limited calibration
data, we achieve performance comparable to user-dependent models.
As shown in Figure 19, we reduce the data needed by 5×. Ideally,
with more diverse users, e.g., over 100 users, we could eliminate the
need for calibration for new users as new users would fall within the
training distribution.

Cross-modal contrastive learning. To boost the effectiveness of
pretraining, we use cross-modal contrastive learning, guiding the
radar model with an eye image based model during pretraining
stage. Our insight is that pretrained eye image models generalize
more easily due to the higher pixel density in images. Although
radar data frames have fewer channels and lower resolution, similar
information can be buried within, not perceptible to human eyes. We
use contrastive learning [13], inspired by recent work on automotive
detection [18], to help the radar model learn generalizable feature
vectors similar to those of the eye image model.

As shown in Figure 9, we prepare a batch of corresponding radar
data and eye images pairs, feeding them into radar and eye image
models respectively, and maximize the agreement between radar
features and eye image features by minimizing contrastive loss.
We train the eye image model separately in advance and freeze
its weights during radar model pretraining stage to make sure the
eye image features doesn’t change and knowledge is distilled from
the vision model into the radar model. Contrastive learning aligns
the distributions of projected radar features and eye image features,
instead of forcing exact values of the features. If we use mean
square loss to directly force features to match, the pretrained model
performs badly since the radar data and eye images are inherently
different.

Contrastive loss. For each training iteration, a batch of data pairs
flow through the networks and output the encoded feature vectors, ℎ𝑟
and ℎ𝑣 , for radar and vision (eye image) respectively. Then, we map
the feature vectors to a hyperspace with non-linear project heads
(2-layer MLP), 𝑝𝑟 (·) and 𝑝𝑣 (·). Thus, we have the projected vectors
𝑧𝑟 := 𝑝𝑟 (ℎ𝑟 ) and 𝑧𝑣 := 𝑝𝑣 (ℎ𝑣) and calculate the contrastive loss as
follow:

L𝐶𝐿 = − 1
𝐵

𝐵∑︁
𝑖

log
exp

(
sim

(
𝑧𝑟,𝑖 , 𝑧𝑣,𝑖

) )∑𝐵
𝑗=0 exp

(
sim

(
𝑧𝑟,𝑖 , 𝑧𝑣,𝑗

) ) (5)

where 𝐵 is the batch size, sim(𝑥,𝑦) := 𝑥⊤𝑦/𝜏 is the similarity
function and 𝜏 is temperature – a hyperparameter that controls the
strength of penalties on hard negative samples. By minimizing the
loss, the contrastive loss encourages similarity between correspond-
ing radar-vision vector pairs and discourages similarity between
mismatched pairs.

Contrastive learning is a self-supervised learning approach which
means it does not use ground truth labels. For our system, we have
the ground truth gaze direction which can be used to guide pretrain-
ing process together. Thus, we combine contrastive loss with the
multitask learning loss in Equation 4 to have the final loss function
for radar pretraining:

L = L𝑀𝑇 + 𝜆𝐶𝐿L𝐶𝐿 (6)
7
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Figure 10: Eye tracking glasses prototype.

where 𝜆𝐶𝐿 is a hyperparameter to control the ratio between two kinds
of loss, which we set as 0.5 empirically.

4 Implementation
Glasses with mmWave radars. Figure 10 shows our eye tracking
glasses prototype for system evaluation and demos. We use eye cam-
eras to collect ground truth for mmET training and evaluation, which
provides gaze direction, eyeball locations, and eyeball orientations
via a black-box computer vision model with approximately 1◦ accu-
racy. We mount 2 Infineon BGT60ATR24C radars [2] on the left and
right corners of the glasses. We use the antenna-in-package version
of radar chips, i.e., antennas integrated with mmWave RF chip, and
rotate the radar arrays to orientate towards the center of users’ eyes.
The radars, small and positioned at the corners, cause negligible
obstruction to the user’s view. This is further confirmed through user
study participants, who reported no noticeable blockage of their field
of view. Two infineon radar MCU boards are mounted on the legs of
glasses to collected radar signals and send them to computer with
cables. We configure the radars to operate from 58 GHz to 63 GHz,
with 1 MHz sampling rate, 4 chirps per frame, and 64 samples per
chirp. Radar FPS is set to 100 for training data collection and 30 for
ML model inference. For future work, we aim to improve system
integration and use transparent antennas on lenses.

Other prototype designs. For early system development, we test
mounting mmWave radars on an unmodified prescription lens and
achieve comparable performance. This shows that our approach is

Figure 11: User study setup.
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Figure 12: Spatial distribution heatmap of gaze direction in our
dataset.

applicable to other hardware setups. We report the results of the final
prototype as we collected data from most users with it.

Model implementation and training. We implement our model
using PyTorch and train it with the Adam optimizer (learning rate:
0.0001) on an Nvidia V100 GPU. The input data is a tensor of shape
(batch_size, 2, 16, 64), where 2 represents the radar data frame and
inter-frame difference, 16 is the number of virtual antennas, and 64
is the number of data samples per antenna. A custom beamforming
layer following Equation 3 is applied first, with trainable weights
updated via gradient descent. We then use a modified ResNet-18 [19]
as the feature extractor, adjusting the first layer for radar input and
the last layer to produce a 512-dimensional feature vector. This
vector is fed into three single-layer fully connected layers to predict
eyeball location, orientation, and gaze direction respectively. We use
a batch size of 128 for pretraining and 32 for both user-dependent
training and fine-tuning. Training and fine-tuning rely solely on
radar data and gaze ground truth, while contrastive learning based
pretraining also uses eye images.
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(b) Cross-session accuracy (remounting)
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Figure 13: Gaze direction accuracy for personalized models. Our personalized (user-dependent) models for 10 users show an average of
1.49◦ error for in-session and 4.47◦ for cross-session testing;

5 Evaluation
In this section, we first describe our user study details, including
data collection procedure. Then, we evaluate the performance of
user-dependent personalized models under the impact of different
setups and the performance when adapting our pretrained model to
unseen new users.

5.1 Experiment Setup
Our data collection and research project have been reviewed and
approved by institutional review board, i.e., IRB approval.

User study. We recruited 16 participants, 4 female and 12 male,
with age ranging from 24 to 50. During the study, the user sits in a
chair and wears the glasses prototype, while looking at the display
for instructions, as shown in Figure 11. The distance between the
user and the display is around 50 cm and sitting position is adjusted
slightly per user to make sure the display fills most of their field
of view. Then, we instruct the users to look at the green guiding
marker on the screen and follow the marker as it moves across the
display area. Each user performs 24 sessions of data collection, 50
seconds for each session, i.e., 20 minutes data collected per user.
Within each session, the gaze guiding marker shows in 49 different
locations, 1 second each. After each session, we ask the user to take
off the glasses and put it back on, i.e., remounting the glasses. With
these remounting sessions, we can collect data with different glasses
wearing positions and evaluate the impact of remounting on system
performance.

Dataset Distribution. Our dataset has a continuous and mostly
uniform distribution of gaze direction for training and testing, as
shown in Figure 12. The collected data cover a horizontal angle
range from -30 to 30, and a vertical angle range from -20 to 20.
To reflect practical usage, we do not restrict the head position and
orientation during experiments. While guiding markers are placed at
fixed locations, natural head movements introduce minor variations
in gaze direction. For all sessions together, the data distribution
heatmap shows a concentration of data samples at the center, with
fewer samples at the edges.

Evaluation metrics. We use the average gaze angular error, i.e.,
the angle between the radar-based and camera-based gaze direction
output, as the evaluation metric for gaze direction accuracy, which
is the same metric used by prior research work [30] and commercial
eye tracking glasses [5]. By default, we show the performance of
user-dependent personalized models trained and tested individually
for 10 different users. We then train a general pretrained model with
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Figure 14: Error distribution heatmaps over the field of view.

10 users’ data together and show the performance when adapting to
the rest 6 new users individually in subsection 5.3. For 24 sessions
of each user, we randomly select 21 sessions and divide the data into
training, validation and testing uniformly, which gives in-session
testing performance (no unseen remounting sessions for testing).
The rest 3 sessions are not used for training and only used to test
cross-session performance, which shows the performance after the
user remounts the glasses. Different from prior work [30], we don’t
perform any short calibration training for cross-session performance
testing, which means models are not calibrated/fine-tuned each time
user remounts the glasses.

5.2 Eye Tracking Performance
Gaze direction accuracy. To evaluate mmET eye tracking accuracy,
we train and test personalized user-dependent models for users in-
dividually. We show the average gaze direction angular errors of
each user in Figure 13. Across all users, mmET achieves an average
error of 1.49◦ for in-session performance and 4.47◦ for cross-session
performance, a median error of 1.53◦ for in-session performance
and 4.29◦ for cross-session performance. The cross-session accuracy
is lower than in-session due to the relative position shift between
glasses and face. To understand the error distribution of gaze distri-
bution angular, we combine all results from 10 users and show the
CDF plot in Figure 13c. Across all samples from 10 users, mmET
achieves a median angular error of 1.26◦ for in-session and 3.39◦ for
cross-session, a 90-percentile angular error of 2.89◦ for in-session
and 8.65◦ for cross-session.

Error heatmaps. We show the gaze direction error distribution
over the 2D field-of-view of users as spatial heatmaps in Figure 14.
mmET provides uniformly distributed errors across all regions of the
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GazeTrak mmET
Per-user data duration 40 mins 20 mins
In-session error 3.6◦ 1.5◦

Cross-session error 5.9◦ 4.7◦

New user error 6.7◦ 5.7◦

Per-session calibration Yes No
Table 2: Comparison table with GazeTrak.
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Figure 15: Ablation study. We use both multitask learning and
beamforming for the best accuracy, reducing the average error by
1.6 degrees.

field-of-view, which ensures that no abnormal region may experience
high error and fail unexpectedly.
Comparison to GazeTrak. GazeTrak [30] is the first acoustic based
eye tracking glasses, which is the closed non-camera-based system to
mmET. GazeTrak present promising results and capabilities, while
mmET achieves lower error with only half of the amount of training
data, as shown in Table 2. Moreover, we achieved 1◦ lower aver-
age angular error for new users’ cross-session (remounting) testing
without needing per-session short calibration, which significantly
improves user experience.
Effectiveness of beamforming and multitask learning. We verify
the effectiveness of beamforming and multitask learning in our sys-
tem design by performing an ablation study (Figure 15). First, we
remove both beamforming and multitask learning from our system
and train a bare metal baseline model for each user, which shows
3.17◦ and 6.03◦ for average in-session and cross-session error re-
spectively. Then, we train a model with only multitask learning and
another model with only beamforming. Both models show around
0.5◦ error reduction compared with the baseline model. Lastly, we
compare the baseline model with mmET model that uses beam-
forming and multitask learning together. mmET shows around 1.5◦

average error reduction compared with the baseline model. Thus, we
show beamforming and multitask learning work together to reduce
gaze direction estimation error effectively.
Accuracy of eyeball location and orientation. As we use mul-
titask learning to estimate eyeball information together with gaze
direction, we evaluate the accuracy of estimated eyeball location
and orientation. For eyeball location, according to our measure-
ments, the location offset distance is up to 8 mm when the user
remounts the glasses. As shown in Figure 16, mmET accurately
estimates the eyeball locations with a median error of only 0.3 mm
and 0.6 mm for in-session and cross-session tests respectively. For
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Figure 16: Accuracy of (a) eyeball location and (b) orientation
estimation using multitask learning.

eyeball orientation, the accuracy is similar to gaze direction accuracy.
mmET provides a median error of 1.42◦ and 3.52◦ for in-session
and cross-session tests respectively. These results show the feasibil-
ity and accuracy of using mmWave radars to estimate the eyeball
information and also validate the proper functioning of multitask
learning.
Impact of antenna number. The number of (virtual) antennas on the
mmWave radar fundamentally decides the spatial sensing resolution,
and consequently the eye tracking accuracy. A larger number of
antennas leads to more input data channels and better accuracy,
but also means the size of radar is larger and power consumption
is higher. To understand the quantitative relation, we reduce the
number of antennas (8 per radar for mmET) virtually by ignoring
corresponding radar signals from the data. For example, to test the
performance of radars with 2 TX antennas and 2 RX antennas, i.e.,
4 virtual antennas, we ignore the rest 4 antenna channels of each
radar during training and testing as if they do not exist. We vary
the number of antennas per radar from 8 (2TX 4RX) to 6 (2TX
3RX), 4 (2TX 2RX), 3(1TX 3RX), 2(1TX 2RX), 1 (1TX 1RX)
and train models for 10 users and evaluate the in-session and cross-
session performance. We show the average angular gaze error for 10
users in Figure 17 and the error bars show the standard deviations
among 10 users for each setup. Both the average error and standard
deviation decrease as the number of antennas increases. We see a
significant improvement from 3 to 4 antennas because the antenna
array becomes a 2D array from a 1D linear array. Moreover, the gain
when increasing antennas from 4 to 8 is small, which implies that
mmWave radars with 4 antennas can provide similar performance
with a smaller hardware size. This provides valuable lessons for
future system development.
Impact of myopia. Many of user study participants have various
extent of myopia, ranging from 0 to -7 diopters. We divide the
users into two groups, one with low myopia, from 0 and -3.0, and
another group with high myopia above -3. There are no evident
difference when comparing the eye tracking performance between
two groups. As mmET rely on the mix of reflections from eyeball,
eyelids, surrounding skin, the different on myopia diopters does not
affect the system performance.
Impact of head movements. To verify the eye tracking perfor-
mance in scenarios that are different from data collection setup,
we instruct 6 user study participants to remount the glasses, move
their heads freely and look at random daily objects around them.
The eye tracking accuracy is stable and similar to fore-mentioned
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Figure 17: Impact of antenna number. With more antennas on
each radar, we achieve a lower angular gaze direction error.
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Figure 18: Our pretrained model can perform well for new users
with only 5 mins calibration.

evaluation results. We visualize the gaze direction estimation results
from mmET in the demo video, which shows the cross-session eye
tracking accuracy.

5.3 Adaptation for New Users
Accuracy with a pretrained model. In this section, we train a
general pretrained model with 10 users’ data together and show the
performance when adapting to the rest 6 new users individually. We
expect to have a one-time calibration process to collect data for such
fine-tuning, and the pretrained model help minimize the duration
of calibration. For each new user, we randomly select 6 sessions
(5 mins) as training data to fine tune the pretrained model for the
specific new user. Figure 18 shows the in-session and cross-session
accuracy for 6 new users. mmET achieves an average angular error
of 1.12◦ for in-session tests and 5.57◦ for cross-session tests.
Reducing training data needed. The main advantage of using the
pretrained model is that we can fine tune the model and achieve
similar performance with much less training data for the new users,
so that new users can undergo a much shorter data collection pro-
cedure before using the system. To quantify the amount of training
data reduction, we compare the performance of fine-tuning a pre-
trained model versus training a model from scratch with various
amount of training data. As shown in Figure 19, the non-pretraind
model achieves lower error with more training data given, but the
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Figure 19: Accuracy versus the training data duration. The
pretrained Model can reduce the training data needed by 80%.

No CL With CL Improvement
In-session Error 1.96◦ 1.17◦ 0.8◦

Cross-session Error 6.13◦ 5.45◦ 0.5◦

Table 3: Effectiveness of contrastive learning. Contrastive learning
reduces the average error when adapting to new users.

pretrained model can achieve a low error with 5 mins or less training
data. For achieving an accuracy of ∼ 1.4◦, we can reduce the dura-
tion of needed training data significantly, from 25 mins to 5 mins,
with the pretrained model. We use one user for evaluation here as
we need over 30 mins training data to capture the trend, which is
only available for one test user. We show the benefit of contrastive
learning based pretraining for multiple users in Table 3 in terms of
accuracy improvement under the same amount of calibration data.
Given the limited number of pretrained users, we cannot eliminate
the calibration/training for new users completely. We expect that
with more users, the pretrained model can be more universal and
needs almost no calibration. Note that for state-of-art eye tracking
cameras or glasses in general, they still need calibration for each use
to achieve the best performance.
Effectiveness of contrastive learning. mmET uses contrastive learn-
ing (CL) during the pretraining process to improve generalizability.
To verify the effectiveness, we compare the average accuracy across
6 new users after fine-tuning two different pretrained models, one
without contrastive learning and one with contrastive learning. As
shown in Table 3, using contrastive learning reduces the average
error by 0.8◦ and 0.5◦ for in-session and cross-session respectively.

5.4 Power Consumption
We use the official tool from Infineon to measure mmWave radar
sensor board power consumption and show the results in Table 4.
With 30 FPS, each radar consumes only 3 mW power, lower than
the microphone and speakers in GazeTrak [30] and much lower
than eye cameras (>100 mW). The measurement is based on the
electric current reading from the mmWave front end. We focus on
the power consumption of sensors only, i.e., mmWave radar board
here. If mmWave eye tracking is integrated as part of a smart glasses
or AR glasses, low-power ASIC or SoC should handle the baseband
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FPS 30 50 100
Power (mW) 3.04 4.88 9.40

Table 4: Power consumption of one mmWave radar under dif-
ferent FPS.

processing and ML model inference for mmWave radars and various
other sensors together, which is out of the scope of this work.

6 Limitations and Future Work
Generalizability. We have not yet develop models that generalize to
unseen users without calibration and provide accurate gaze direction.
This is within expectation given the limited number of users we have
for model pretraining. Using eye image based eye tracking models as
reference, models that can generalize for unseen new users typically
need hundreds of users’ data to effectively cover the diversity of
population. For mmET, we need to scale up the data collection with
100+ users to improve its generalizability with larger datasets for
pretraining. We leave this as future work.
Robustness. Although we tested the impact of head movements, we
have not extensively verified the performance during large-scale user
activity, such as jumping or running. This is largely decided by the
mechanical design, i.e., whether the glasses can fix on the user’s face
in a stable way. Commercial camera-based eye tracking glasses are
also susceptible to such movements and provides adjustable nose
pads and head strips to solve this, which are also applicable to our
system.
Hardware prototyping. Our mmWave radars are currently mounted
on the glasses externally. A more integrated solution is to embed
the radars within the glasses frames, which is feasible given the
small size of antenna array (8 mm). As we analyzed the impact of
antenna number on accuracy (Figure 17), we can potentially even
further reduce the number of antennas. Another solution is to place
the mmWave antennas on the optical lens with transparent antenna
technology, which is our future work.

7 Conclusion
Accurate and robust eye tracking, with a small hardware size and low
power consumption, is a critical component to enable gaze-based
user interface and context-aware AI on emerging AR/smart glasses.
We present mmET, the first mmWave radar-based eye tracking sys-
tem with a glasses form factor. Using the FMCW signals reflected
from eyes, mmET accurately estimates the gaze direction with tai-
lored signal processing and a multitask ML model. We further use
cross-modal contrastive learning to pre-train a model that adapts
to new users with short one-time calibration. Our work advances
mmWave radar-based sensing on mobile devices, offering a robust,
compact, and low-power solution for eye tracking.
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